Hydronics 101 Basics

Class Outline & Workbook

- ➤ Heat Loss
- > Heating type
- > Heat Source
- > Space
- > Piping method
- > Pump/Pipe size
- > Separation

- > Zoning
- > Venting
- > Expansion tank
- > Water or Glycol
- > Controls
- > Gas Piping

Intermountain Sales and Marketing

965 West 850 South Woods Cross, Utah 84087 801-936-0228

"A poorly designed distribution system can ruin the performance of any hydronic system!" THERE IS NO "ONE-SIZE-FITS-ALL" SOLUTION What to know or consider before and during your project!!

Heat Loss	Piping method	Venting
Heating Type	•Straight in straight out "Primary"	•Location
(HIGH MASS OR LOW MASS)	•Primary/Secondary	•Size
•In Concrete or Gypcrete	•Mixing/Injection	•Type
•Staple up	•Heat Exchanger	Expansion tank
•Above floor panel	•Buffer Tank	•Size
•Baseboard	Pump/Pipe size	•Location
•Fan Coils	• <i>GPM</i>	•pressure
•Radiators	•Head loss	Water or Glycol
•Ceiling Panels	•BTU load	•Percentage
•Wall Panels	Separation	•Treatment for fluid
Heat Source	•Air	Controls
•Condensing/Non-Condensing	•Dirt	Gas Piping
•Electric	•Magnetic	
•Heat Pump	Zoning	
•Steam	•Zone Valves/Actuators	
•Heat Exchanger	•Zone circulator(s)	Hydronic systems
•Wood	•Fixed Speed	require A LOT of
•Oil	•Variable Speed (ECM)	considerations

Space

 Location of equipment 	
	(IT IS RECOMMENDED TO INSTALL A MAGNETIC DIRT
•Size of equipment	SEPARATOR IN ANY SYSTEM USING AN ECM-TYPE CIRCULATOR)
•Clearances	

✤ Heat Loss

vie	ga	James Frailey Intermountain Sales & Marketin 965 West 850 South Woods Cross, Utah 84087 Phone: 801-936-0228 Email:james@intsales.co	g			OSS Summary RAE Load Calculation Project #:001 February 18, 2019
Project	Information					
Project #:	001		Notes:			
Name:	Frailey					
Location:	Stockton, Utah					
Load Ca	alculation Sumn	nary				
Design Loca	ation:	SALT LAKE CITY INTL, Utah	Component Losses:	49,617	Btu/hr	
-	ation Method:	ASHRAE	Infiltration/Ventilation:	19,109	Btu/hr	
Outdoor Ter	mperature:	14.4 °F	Radiant Back Losses:	7,081	Btu/hr	
Floorplans /	Levels:		Total Heating Load:	75,808	Btu/hr	
Basemer	nt	1,893 ft ²				
Main Flo	or	3,751 ft ²	Radiant Heating:	68,726	Btu/hr	
Total Area:		5,645 ft ²	Radiant Back Losses:	7,081	Btu/hr	
			Total Heating Load:	75,808	Btu/hr	

Load Calculation Results

Total Project

Room	Area	Heating Type	Room Temp	Walls	Windows	Doors	Skylights	Floor	Ceiling	Infiltration	Additional	Recovered Panel Loss	Design Load	Unit Loss
Total For Project	5,645	RH	70.0	10,283	8,915	16,761	0	9,566	13,410	19,109	0	-2,237	75,808	14.1

How many BTU's do we have in the given heat loss example?

What was our total area in this example?_____

What is the GPM and Head loss from the given example? _____GPM _____Head Loss

Radiant Heating Details

Manifold Summary

Manifold Name	Zones	Circuits	Flowrate	Head Loss ¹	Required Temp.	Supplied Temp.	Temp Drop	Manifold Type	Control Type	Actuators	S/R Length ²	S/R Pipe
Manifold 1	1	8	0.85	2.5	91	110	20	Stainless Steel - Shut Off/Balancing/Flow Meters, 1-1/4"	Manifold	0	30	ViegaPEX Barrier 3/4" (Coil)
Manifold 2	3	5	0.54	2.0	94	110	20	Stainless Steel - Shut Off/Balancing/Flow Meters, 1-1/4"	Circuit	5	50	ViegaPEX Barrier 3/4" (Coil)
Manifold 3	3	3	0.34	1.9	96	110	20	Stainless Steel - Shut Off/Balancing/Flow Meters, 1-1/4"	Circuit	3	50	ViegaPEX Barrier 3/4" (Coil)
Manifold 4	1	9	3.19	15.6	109	110	20	Stainless Steel - Shut Off/Balancing/Flow Meters, 1-1/4"	Manifold	0	60	ViegaPEX Barrier 3/4" (Coil)
Manifold 5	1	9	2.16	10.2	100	110	20	Stainless Steel - Shut Off/Balancing/Flow Meters, 1-1/4"	Manifold	0	80	ViegaPEX Barrier 3/4" (Coil)
Manifold 6	2	4	0.72	2.7	110	110	20	Stainless Steel - Shut Off/Balancing/Flow Meters, 1-1/4"	Circuit	4	70	ViegaPEX Barrier 3/4" (Coil)
Manifold 7	2	5	0.58	2.3	97	110	20	Stainless Steel - Shut Off/Balancing/Flow Meters, 1-1/4"	Circuit	5	80	ViegaPEX Barrier 3/4" (Coil)
Total	13	43	8.37	15.6	110	-	-	-	-	17	-	=

(1) Total Head loss includes manifold, circuits and supply/return piping if specified., (2) S/R Length = one way

	Concrete S	System Tubi	ng Estimat	or
Calculate the net	Viega Barrier PEX Tubing	Net Heated Area	Multiplier	Estimated Amount
 heated area. Use charts to make an initial materials list for the net area to be heated. 	6" Spacing		2.2	
	9" Spacing		1.5	
	12" Spacing		1.1	
	Viega Barrier PEX T	ubing ½", 5⁄8	3", 34"	

Based on our total area in our example, how much 1/2" tubing do we need to order if we are installing at

6" on center:	
9" on center:	
12" on center:	
What is the standard max floor temperature for wood floors?	
What is the standard practice for residential radiant tubing size?	
Standard on center spacing for living areas in a home?	
Most snowmelt tubing applications use what size tubing?	
Can you use ½" tubing for snow melt?	
Typical design length for ³ / ₄ " tubing in a snow melt application is?	

* Heating Types

What are your 4 basic heating types?

1.	
2.	
3.	
4.	

Do all heating types use the same boiler water temperature?_____

What is the optimal boiler water temperature design for condensing boilers doing radiant floor heat?

* Heat Source

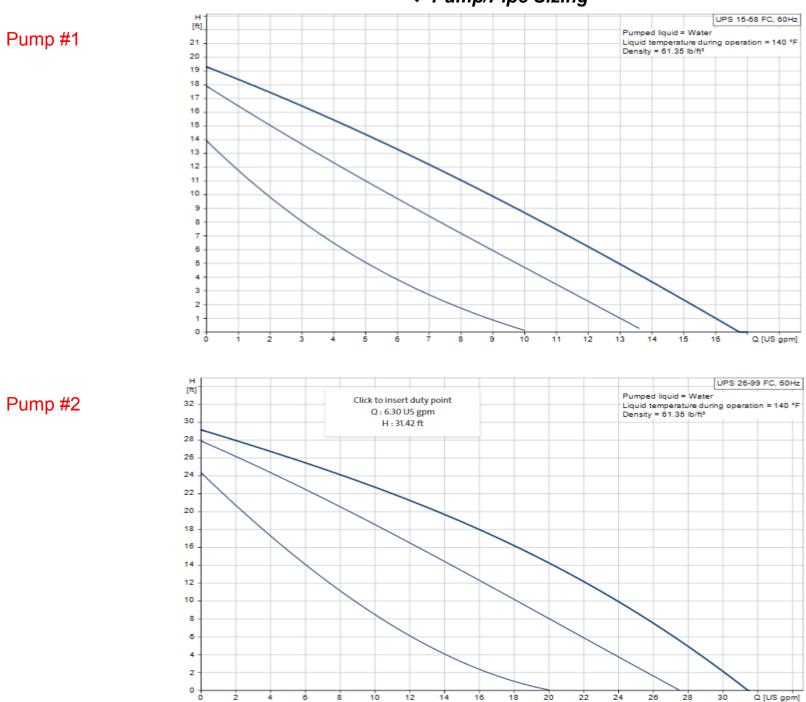
Do condensing boilers condens above 140°	?

Can different types of heating equipment be installed on the same system?_____

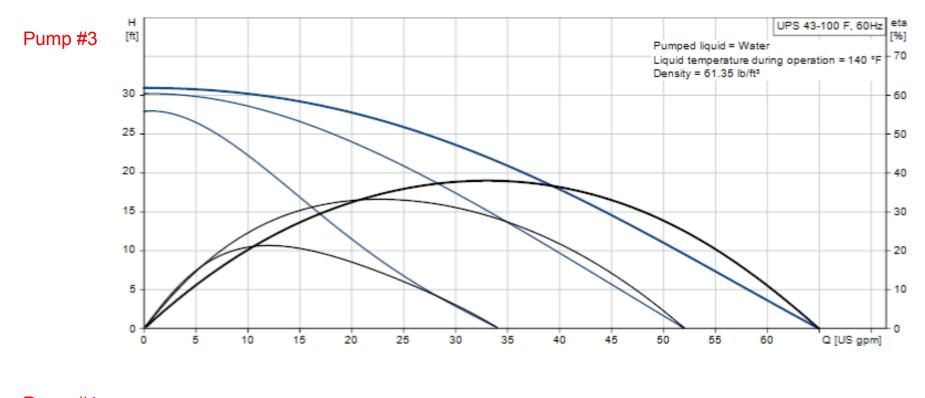
What are your options and why use them?

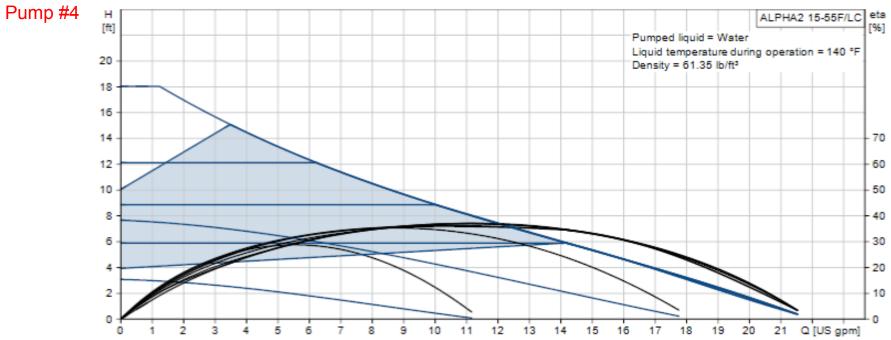
Condensing vs Non-condensing

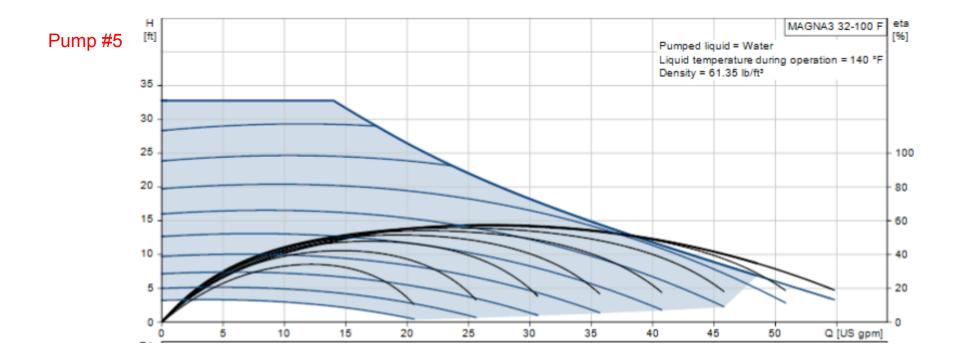
Electric or heat pump


Wood burning or oil burning

Steam


Heat exchanger


* Piping Methods


•	What type of piping method is commonly used today?	
•	What is our main goal for doing primary/secondary piping?	
•	out of a tee!	
•	Instead of closely spaced tee's, we can use?	
	Also called?(Hint: LLH)	
•	When is mixing/injection used on a system?	
•	What is the main benefit of using a heat exchanger?	
•	When is a good time to consider using a buffer tank?	
•	The supply in and out, (hottest water) are always piped to the of the tank.	

* Pump/Pipe Sizing

What are the two pieces of information that we need for sizing a pump?

&	
What information do we need to size a pipe?	
Does the length of pipe affect your head loss?	
What copper pipe size do we need for a boiler loop that requires 12 GPM?	
What PEX pipe size do we need for a boiler loop that requires 12 GPM?	
What is head loss?	
Can we transfer 530,000 btu's through 1-½" pipe using 40% Glycol?	
What is the smallest pipe size for 30% glycol, 1,000,000 BTU's?	

If we have a 2 story house with a pipe going 20' vertically, do we have to account for the 20' of vertical pipe?

Example #1:

We have a room that is 1000 sqft. Total load is ______ BTU's to heat. We will have _____ runs of 1/2" tubing @ 250' each, 9" on center. Our pex pressure loss chart says that 1/2" tubing has a loss of _____ per foot. So based on the information given,
We need a min of _____ GPM for 30,000btu's. One run of 1/2" tubing @ 250'= _____psi/ft.
.75 * 2.31= _____ ft/hd.
The head loss is the same for all 6 runs so our tubing head loss is ______ *"Most stainless manifolds and brass manifolds add another 1 ft of head to your total head loss."*To size a pump we need one that will handle _____ GPM and _____ ft head.
What pump would best fit this application with the given GPM and Head Loss from above?

Does more than one pump fit this application?______

Example #2:

Our first manifold has 6 loops of ¹/₂" tubing @ 250' each loop with the needed GPM and Head, 2 GPM and 2.73 ft head.

If we have a second room that is 1800 sqft. At a 30 ΔT, we need ______ BTU's. How many loops do we do at 9" on center and how long is each loop? ______ loop manifold of ½" tubing @ ______ each loop. What is our minimum GPM? Each loop gets _____ gpm and _____ ft head. Add the gpm up for ___ gpm and take the max head loss with the manifold: _____. This manifold gets _____ gpm @ _____ft head.

For one pump to handle both manifolds then we combine the gpm, 2 + 3.6 = _____ GPM Take the highest head loss, _____ and now we need a pump that can do _____ gpm and _____ ft/hd.

What pump would best fit this application with the given GPM and Head Loss from above?______

Example #3:

We have a single boiler, 210,000 btu's. We are trying to heat a small driveway of 1400 sqft, @ 12" on center. How many loops do we need? _____ loops of ³/₄" tubing @ _____' each loop. The GPM is _____ gpm total, our total head loss is _____ ft/hd.

What pump do we need? ______

Do we have more than one option? ______

What size main lines do we run in PEX? Distance is 10' away? _______

♦ Separation
 > Air
 > Dirt
 > Debris
 > Metals

Why do we need to have an air separator on our system?

When do we want to use a magnetic separation device?	
--	--

An air separator w	ill usually be installed at the	and the	point of the system,
•	5		

and always before the _____.

Do we have to install air vents at all high points in the system?

✤ Zoning
 ➢ Pumps
 ➢ Zone Valves

Why should we even consider doing multiple zones?

What is the best way, Pumps or Zone Valves?	
Are thermal actuators the same as a zone valve?	
Thermal actuators are usually mounted where?	
Do zone valves get mounted on the supply side or the return side?	
Why would we use zone valves or actuators instead of just using pumps?	

* Expansion

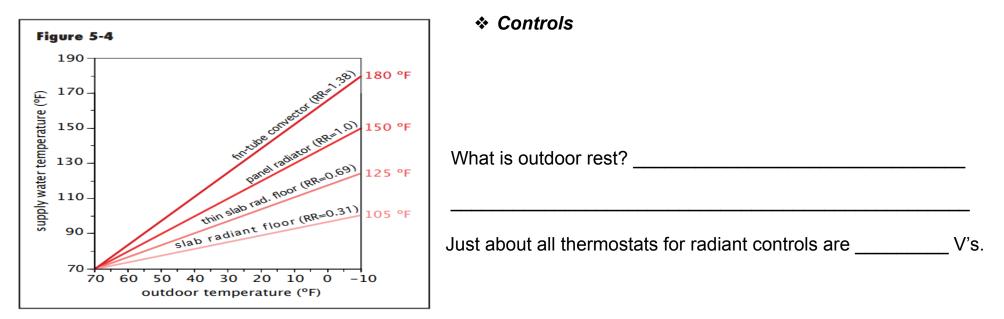
Try to avoid mounting the tank in what two positions? _		
The expansion tank is always mounted	_ the system circulator.	
A residential boiler that is 250,000 btu's doing radiant he	eat needs what size expansion tank? _	
A small commercial boiler doing snow melt, 500,000 btu	u's needs what size tank?	
What if that same 500,000 btu's is for a residential hous	se doing snow melt?	
A residential house using 250,000 btu's doing baseboard heating needs a		gallon tank.
Most, if not all commercial applications require	rated tanks.	
When in doubt, always size the tank	then you may think.	

* Water or Glycol

What's the difference between an open and close system?

Why use glycol?

Are all glycols made the same?


40% glycol will not freeze above?	
-----------------------------------	--

If I have a system that needs 125 gallons and I want to make the glycol solution 30%, how much glycol do I need and how much water do I need?

<u>Ga = V * G% ÷ 100</u>

2) My current system is a snow melt system that has been leaking for a year. The maintenance crew has been adding water to keep the pressure up and now the current glycol solution is down to 20% glycol. I need the solution to be 40%. My total volume from the original installer's notes says he put in 220 gallons to fill the system. How many gallons needs to be removed and replaced with 100% glycol to bring the system back to 40%?

Vg=TSV(PSd-PSt)÷(100-PSt)

What if our circulator produces more amps then our relay control or boiler can handle?

Can you mix zone pump controls and zone valve controls?
If you have an application where only 2 wires were ran for the thermostats, do you have to install thermostats that
are battery powered only?

What sensors need to be installed for a snow melt controller to work?

Always make sure the snow melt sensor housing has adequate ______.

✤ Gas Pipe

If an in line gas regulator is used, it must be a minimum of feet from the boiler.
If the regulator is to be vented outside, for every you need to increase the vent pipe size.
The regulator body size should not be more than size smaller than the outlet pipe size.
When sizing your gas lines make sure you convert your to
Example:
We have a residential snow melt boiler of 500,000 btu's in Salt Lake City. The boiler is 40' from the gas regulator that is in the same room, and the boiler has a gas connection size of $1-\frac{1}{4}$ ". System supply pressure to the mechanical room is 2lb. Our gas regulator is stepping down from the 2lb to the 4oz for the boiler.
What size supply line do we need from the regulator to the boiler?
What pipe connection size on the regulator can we get away with?
Do we need to vent the regulator to the outside?
Where should the gas line shutoff valve be located?

Can we run CSST gas pipe from the gas regulator to the boiler?